
www.kalrayinc.com 

Nicolas Brunie, 

Metalibm Workshop, March 12th 2018 

Generating Hardware Block Floating-Point 

implementations with Metalibm Lugdunum 

Page 1 ©2018 – Kalray SA All Rights Reserved – Confidential Information 



Page 2 ©2018 – Kalray SA All Rights Reserved – Confidential Information 

1. Metalibm  (Lugdunum) in general 

2. RTL generation in Metalibm 

3. Fixed-Point description 

4. Fixed-Point middle-end 

5. Demonstration 

6. THE big announcement 

7. Conclusion 

 

Outline 



Page 3 ©2018 – Kalray SA All Rights Reserved – Confidential Information 

• Set of tools for the generation, validation, profiling of arithmetic kernel code 

• Metalibm Description Language 

• Rich and Verbose 

• Based on pythonsollya for numerics 

• Intermediate Representation processing 

• Validation, Optimization, Vectorization 

• Easy to manipulate, extend 

• TestBench (validation and profiling) generation 

• Debug messages 

• Numeric emulation and checking 

• Benchmarking 

• Backends for Code generation 

 

Metalibm Generation Scheme 

PASS 

BACKENDs 

FRONTEND 



Page 4 ©2018 – Kalray SA All Rights Reserved – Confidential Information 

Demo 



Page 5 ©2018 – Kalray SA All Rights Reserved – Confidential Information 

• Introducing Entity object 

• MDL extended: New Meta-operations  

• Signal, Process, … 

• VHDL Backend 

• TestBench Generation Capabilities 

• Wrapping entity 

• Simulation ready 

• Debug capabilities 

• Generate script to extract internal signals from entities 

• Intermediate processing passes 

• Legalization 

• Pipelining 

RTL generation capabilities 



Page 6 ©2018 – Kalray SA All Rights Reserved – Confidential Information 

• Extra fixed-point formats 

• Virtual format, reliying on physical support format 

• FixedPointPosition meta-operation 

• Abstract position relative to the final point position 

• Can be injected into operation flow 

• Resolved during code generation 

• Multiple Specifiers: 

• FromLSBToLSB, FromMSBToLSB, FromPointToLSB, 
FromPointToMSB 

• Easy to build operator by combining 
multiple sub-operators (e.g: dot-products) 

Fixed-Point operator description 

X 

+ 

+ 



Page 7 ©2018 – Kalray SA All Rights Reserved – Confidential Information 

• Legalize operations 

• Resolve FixedPointPosition value 

• Min-Max legalization 

• Determine a format for each undefined node 

• Enforcing “no overflow” rule 

• Limiting width to the minimal required 

• Introducing conversions when required 

• Optimizations 

• Constant propagation 

• Pipelining 

• … 

Fixed-Point middle-end 



Page 8 ©2018 – Kalray SA All Rights Reserved – Confidential Information 

Demo 



Page 9 ©2018 – Kalray SA All Rights Reserved – Confidential Information 

• Kalray’s Metalibm is now open-source 

• Available on https://github.com/kalray/metalibm 

 Feel free to try it out, fork it and contribute back 

• Thanks to all involved: Florent, Hugues, Marc, Julien, GuillaumeS, … 

THE Big Announcement ! 

https://github.com/kalray/metalibm


Page 10 ©2018 – Kalray SA All Rights Reserved – Confidential Information 

• Set of tools to build RTL operators 

• Implementation description 

• Code generation 

• Validation and Testing 

• Future works 

• Abstract MDL from VHDL concepts 

• Extend fixed-point optimization 

• Push pass architecture to software side 

Conclusion 



Page 11 ©2018 – Kalray SA All Rights Reserved – Confidential Information 

• Extending x86 Backend (SSEs, AVX, AVX2 …) thanks to Hugues 

• Clean vector format definition (SSE / AVX based on Virtual vector format) 
• New optimization pass for vector promotion (based on implementation availability) 

• Goal: avoid converting back and forth between standard and machine specific registers 
• Instantiated for x86 (m128, m256) and Kalray (wp) 

• New optimization: Select Compare  to Comparison translation (x86) 

• Adding support for multi-word arithmetic  

• Meta-blocks to simplify support of double double, triple double single single 
• Meta-block for Leading Zero Count (e.g. useful for vector implementation) 

• Wrapped with (python)CGPE , thanks to Hugues 

• Adding internal benchmarking capabilities (based on ReadTimeStamp node) 

• Sub-vector support, thanks to Guillaume G. 

• Meta-functions: expm1, new log, rsqrt, atan, tanh, sinh 

• Cleaning non-regression tests 

• Metalibm is now compatible with python3 

 

Last year in Metalibm, 1/2 



Page 12 ©2018 – Kalray SA All Rights Reserved – Confidential Information 

Adding VHDL code generation capability 

• ML_Entity 

• TestBench generation 

• Pipelining 

• Clean pass-based optimization pipeline 

• Fixed-Point format and optimization pass (legalizer, datapath sizing) 

• FixedPointPosition placeholder 

New test generation mechanism 

• IEEE-754 arithmetic (special values) 

• Weighted probability for directed random generation 

On going: 

• Refactor software pipeline: dynamic organization around passes 

• Automatic micro-bench generation for micro-architectural profiling and target annotation 

• Code cleaning (enforcing PEP8, linter in integration, authorized to fail (pylint -15.77 / 10 …) 

 

Last year in metalibm, 2/2 


